DEPARTMENT OF STATISTICS

STAT 613 Fall 2013

Regression Analysis for Business
Syllabus

Instructors:

Ed George edgeorge@wharton 446 JMH 898 8229
Shane Jensen stjensen@wharton 463 JMH 573 2211
Robert Stine stine@wharton 444 JMH 898 3114
Richard Waterman waterman@wharton 449 JMH 898 1243

Source material

Required

• Class Notes. These can be downloaded directly from the Stat 613 Canvas e-room.
• JMP 10 (software), SAS Institute, downloadable from upenn.onthehub.com

Optional (on reserve at Lippincott Library)

The fundamental material for the class is contained in the Class Notes, which will be discussed and elaborated in the class lectures. The Stine and Foster (SF) textbook elaborates on most (but not all) of the Class Notes. Links to the relevant readings in SF appear throughout the Class Notes. For those who would like further background materials, we recommend Sall, Creighton and Lehman (SHL), Freedman, Pisani and Purves (FPP) and Keller (K). SHL is an example-rich guide to statistical analysis with the statistics package JMP. FPP is a highly verbal and conceptual book - an excellent introduction both for “poets” who are unfamiliar with technical readings and for “quants” who would like a better sense of the reasoning behind statistics. K is in the style of a traditional “reference manual” and explains details and provides many formulas for statistical procedures that are not covered in class.

JMP is the computer package we’ll use extensively for statistical calculations and graphics. In particular, an essential component of 613 will be project work requiring substantial use of JMP. Although JMP is merely a tool and not the central point of the course, it is sufficiently useful that you will need it.

Class Preparation

As soon as possible, you should obtain and install JMP. Before each class, you should review the material from the previous class and you should skim the Class Notes that will be covered. This is a course that builds upon itself and it is crucial to not fall behind. The classes focus on critical interpretation of results and analysis of assumptions. We use JMP to carry out the computations, although the software itself is not the main focus of the course.

You should also read the relevant sections of the SF textbook as annotated throughout the Notes and shown in this syllabus. We strongly recommend that you review the exercises that conclude each chapter. The exercises in each chapter of the SF textbook begin with matching, true/false, and conceptual questions. You should routinely skim these exercises in every chapter; they review notation and basic properties of the methods covered in class. In addition, the course outline identifies specific additional “you do it” exercises that require data analysis or computation that is related to examples and topics of lectures. These exercises will not be evaluated but are useful for review.

Course Overview

This course provides the fundamental methods of statistical analysis, the art and science if extracting information from data. The course will begin with a focus on the basic elements of exploratory data analysis, probability theory and statistic inference. With this as a foundation, it will proceed to explore the use of the key statistical methodology known as regression analysis for solving business problems. These methods and their application will reappear in many other MBA classes and are part of the basic “tool kit” expected of all MBAs in their careers.
<table>
<thead>
<tr>
<th>Lecture Date</th>
<th>Key Topics</th>
<th>Reading (SF)</th>
<th>Exercises</th>
</tr>
</thead>
</table>
| 1 Aug 26 | Course overview
Variation
histogram, boxplot, mean, median, interquartile range, standard deviation, skewness, logarithm | Ch 4
SIA p144 | 4.55-56, 59
1-4, p 149 |
| 2 Aug 28 | Probability models
independence, random variable, distribution, expected value, SD and variance | 7,9
7.45, 47
9.35, 37, 43, 49
55 (4M) | |
| 3 Sep 04 | Normal models
continuous random variable, quantiles (Empirical Rule), quantile plot, log-normal | 12 | 12.39, 41, 43, 49, 51 (4M) |
| 4 Sep 09 | Association
contingency table, mosaic plot, chi-squared, Simpson’s paradox, lurking variable | 5 | 5.39, 43, 45, 53 |
| 5 Sep 11 | Conditional probability
dependence, Bayes rule | 8 | 8.39, 45, 47, 49 |
| 6 Sep 16 | Sampling distributions
simple random sample, iid, Central Limit Theorem | 13, 14.1
SIA p302 | |
| 7 Sep 18 | Confidence intervals
inference, t-distribution, confidence level, margin of error | 15 | 15.39, 43, 49, 51 |
| 8 Sep 23 | Hypothesis testing
Null and alternative hypotheses, Type I and II errors, α-level, p-value, break-even analysis | 16 | 16.39, 43, 45, 47 |
| 9 Sep 25 | Comparing two samples
Confounding, two-sample t-test, confidence interval for difference | 17 | 18.29, 31 |
| 10 Sep 30 | Comparing dependent samples
Experimental design, paired sampling, covariance | 6, 17 | |
| 11 Oct 02 | Fitting lines to data
Slope and intercept, fitted values and residuals, r-squared | 19 | 19.39, 41, 43, 47 |
| Oct 07 | Review Lecture
variation, inference, testing | | |
| Oct 14 | Midterm Exam 6-8pm | | |
| 12 Oct 21 | Fitting curves to data
Transformations (logarithm, reciprocal), elasticity | 20 | 20.31, 33, 35 |
| 13 Oct 23 | Simple regression model
Parameters, assumptions, basic diagnostics | 21.1-2 | |
Inference for the Simple Regression Model
Tests, confidence intervals, prediction intervals

- Oct 28
- 21.3-4
- 21.39, 41, 43, 47

Remedies for common problems
Nonlinearity, dependence, heteroscedasticity, outliers

- Oct 30
- 22
- 22.39, 41, 43, 47
- 49 (4M)

Multiple regression
Scatterplot matrix, marginal and partial slope, path diagram

- Nov 4
- 23.1-2

Multiple regression model
R^2, F-statistic, model profile, diagnostic plots

- Nov 6
- 23.3-5
- 23.39, 41, 43, 47

Collinearity in multiple regression
Variance inflation factor

- Nov 11
- 24
- 24.33, 35, 37, 41

Using categorical variables in regression
Dummy variable, partial F-test, model profile

- Nov 13
- 25.1-4
- 25.39, 41, 43, 47

More categorical predictors

- Nov 18
- 25.5

Review: building a regression model
Stepwise regression, data mining

- Nov 20
- SIA p767

Week of Thanksgiving: No Stat 613 lectures

Forecasting with regression models
Lagged variable, autoregression, Durbin-Watson, seasonality

- Dec 2
- 27.2-3
- 27.33, 35, 37, 43

Final Review Lecture

- Dec 4

Final Exam 9-11am

Attendance

Attendance is an important aspect of the Wharton commitment. Wharton students are admitted in part because of the experiences they bring to the community that they can add to class discussions. Without attending, learning as a collaborative process cannot exist. Accordingly, absences are only appropriate in cases of personal emergency. In addition, late arrival is disruptive to the learning environment and promptness is expected. Please make note of the start of the term and the time of deliverables and exams as you make travel plans. In case of illness, we require a letter of confirmation from Student Health Services. If you find yourself in a conflict due to your career search or recruiting activity, you should work with the MBA Career Management Office to find a resolution. Absences due to recruiting are not excused. Employers are prohibited from requiring recruiting-related activities (e.g., interviews, events or travel) that conflict with a student’s academic commitments. An employer’s inflexibility on this issue is a violation of Wharton’s recruiting policies.
Exercises, Quizzes and Exam

There will be weekly exercises as indicated in the course syllabus. These exercises will not be collected, but they are essential for the learning process and you should treat them as a requirement. The textbook supplies brief answers to these questions and office hours are available for further questions.

There will be six in-class quizzes throughout the course. Quizzes will take place on Wednesdays, see the Canvas calendar.

There will be a two-hour midterm and a two-hour final exam.

Learning Team Project

A project will be assigned to each learning team during the course. It will entail the statistical analysis of a data for a business application that your team will describe in four installments. It will be possible to complete these installments before the listed due dates, and you are encouraged to submit them early.

This project must reflect the work of only your learning team. You are strictly forbidden from discussing this project with anyone outside your learning team.

Teaching Assistants (TAs)

TAs for Stat 613 will hold office hours throughout the course. Times and locations will be posted in the 613 Canvas e-room.

Classroom Expectations - Concert Rules

- Class starts and ends on time.
- Sit according to the seating chart (posted on line in Canvas).
- Late entry or reentry only under exceptional circumstances.
- Name tents displayed.
- Phones, laptops and other electronic devices turned off. We do permit the use of tablets (e.g., an iPad) for taking notes in class.

Grading

Grades for the course will be based on the following components

<table>
<thead>
<tr>
<th>Component</th>
<th>Percentage</th>
</tr>
</thead>
<tbody>
<tr>
<td>Final Examination</td>
<td>30%</td>
</tr>
<tr>
<td>Midterm Examination</td>
<td>25%</td>
</tr>
<tr>
<td>In-class Quizzes (6)</td>
<td>15%</td>
</tr>
<tr>
<td>Project</td>
<td>20%</td>
</tr>
<tr>
<td>Concert rules, including attendance</td>
<td>10%</td>
</tr>
</tbody>
</table>

Attendance is mandatory. One unexcused absence is allowed during the semester without penalty; beyond that, each unexcused absence removes a ½ percentage point from your total grade.